Discriminative Local Sparse Representation by Robust Adaptive Dictionary Pair Learning

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Semi-Supervised Discriminative Dictionary Learning for Sparse Representation

We present an online semi-supervised dictionary learning algorithm for classification tasks. Specifically, we integrate the reconstruction error of labeled and unlabeled data, the discriminative sparse-code error, and the classification error into an objective function for online dictionary learning, which enhances the dictionary’s representative and discriminative power. In addition, we propos...

متن کامل

Accelerated Dictionary Learning for Sparse Signal Representation

Learning sparsifying dictionaries from a set of training signals has been shown to have much better performance than pre-designed dictionaries in many signal processing tasks, including image enhancement. To this aim, numerous practical dictionary learning (DL) algorithms have been proposed over the last decade. This paper introduces an accelerated DL algorithm based on iterative proximal metho...

متن کامل

Dictionary Learning Algorithms for Sparse Representation

Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally...

متن کامل

Incrementally Built Dictionary Learning for Sparse Representation

Extracting sparse representations with Dictionary Learning (DL) methods has led to interesting image and speech recognition results. DL has recently been extended to supervised learning (SDL) by using the dictionary for feature extraction and classification. One challenge with SDL is imposing diversity for extracting more discriminative features. To this end, we propose Incrementally Built Dict...

متن کامل

Robust Identifiability in Sparse Dictionary Learning

Sparse coding or sparse dictionary learning methods have exposed underlying sparse structure in many kinds of natural data. Here, we generalize previous results guaranteeing when the learned dictionary and sparse codes are unique up to inherent permutation and scaling ambiguities [1]. We show that these solutions are robust to the addition of measurement noise provided the data samples are suff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems

سال: 2020

ISSN: 2162-237X,2162-2388

DOI: 10.1109/tnnls.2019.2954545